人の手に代わる機械

— 実践型機械設計実習 —

名古屋工学院専門学校 機械工学科 〇谷内 優太, 新田 海翔

1. はじめに

本取組は、これまでに学んだ知識、技術の集大成 として機械の設計製作に取り組み、ものづくりの実 践的なプロセスを経験することを目的とする.機械 工学科の卒業制作として行われており、昨年度から 始まった取組である.

昨年度はペットボトルのキャップを自動で開栓 する装置を製作した. 本装置の設計から製作, 完成 までの取組を紹介する.

2. ペットボトル開栓補助機の概要

2.1 装置の構成

本装置は(i)ペットボトルをつかむ機構,(ii) キャップをつかむ機構、(iii) キャップを回す機構、 (iv) フレーム, (v) 制御部の5つに分かれて構成 される.

エアコンプレッサにより供給される空気圧を 動力源として動作し、シーケンス制御によって制御 される.

【外観】

図 1. 装置正面

図 2. 装置背面

2.2 設計・製作プロセス

本取組はテーマに沿ってアイデアを出すことか ら始まり、設計・製作プロセス(図3)の流れで完 成を目指した.

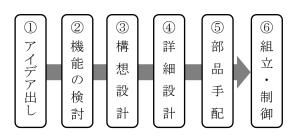


図3. 設計・製作プロセス

3. 取組内容

3.1 ①アイデア出し

第一段階として、次の3つの条件に基づきアイデ アを検討した.

- ・人の手で行っている作業を自動化したい.
- ・世の中にないものを作りたい.
- ・くだらないものを作りたい.

挙がった案の中から実現性を考慮し、ペットボト ル開栓補助機に決定した.

3.2 ②機能の検討

人間の手がペットボトルのキャップを開ける際, どのような動作をしているか文章化し、今回製作す る機械に必要な機能を以下の3点とした.

- (1)ボトルをつかむ
- (2)キャップをつかす
- (3)キャップを反時計回りに回す

3.3 ③構想設計

必要な機能を実現できる装置の構成を検討した. 今回は実践的なものづくりを目的としているため, 広く工場で使用されている空気圧を動力源とする ことにした. エアチャック (図 4. 部品をつかむア クチュエータ1) とロータリシリンダ (図5. 回転す るアクチュエータ)を組み合わせ、機能の実現を目 指した.

Yuta Taniuchi E-mail: nkc20242282@st.denpa.jp Kaito Nitta

図 4. エアチャック [1] 図 5. ロータリシリンダ [1] 3.4 ④詳細設計

構想設計を元に、実際に製作できるよう部品の設計、購入部品の選定を行った。Autodesk 社製のInventor Professional という 3D CAD (図 6) を使用し、モデリングを行った。本工程では構成する部品はコストを抑えるため、可能な限りミスミ 2 で購入可能な機械部品を使用することとした。

図 6. Inventor Professional/Autodesk

(i) ペットボトルをつかむ機構(図 7), (ii) キャップをつかむ機構(図 8), (iii) キャップを回す機構(図 9) を先に設計し,次にそれぞれを保持する (iv) フレーム(図 10),最後にフレームに合わせて制御部品をまとめた (v) 制御部(図 11) を設計した.

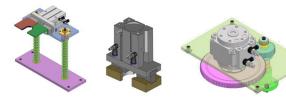


図 7. (i) 図 8. (ii) 図 9. (iii)

図 10. (iv)

図 11. (v)

3.5 ⑤部品手配

3D モデルを元に部品表を作成し、納期と価格を 比較して仕入先を検討した. 購入部品はミスミ (https://jp.misumi⁻ec.com/) とモノタロウ (https://www.monotaro.com/) から選定し、その他は本校の在庫部品を使用、製作した。

3.6 ⑥組立・制御

3D モデルを元に組み立てる順番を決め、配線の取り回し、部品同士の位置関係、ねじ締めの強さなどを考えながら組立てた。制御部品は配線に合わせて取付加工を行った。

ボトルをセットした後の動作は以下のようにシーケンス制御によって制御した.

- (1) 始動ボタンを押すとボトルを保持動作中はランプが 0.5 秒間隔で点滅
- (2) (1)の3秒後にキャップを保持
- (3) (2)の3秒後にキャップ保持部ごと反時計回り に回転
- (4) (3)の5秒後にキャップ保持部を初期位置まで 戻す
- (5) ボトルを開放

4. 今後の課題

- ・配線の取り回し改善
- ・ボトル保持部の改善
- ・キャップ閉栓制御の追加プログラム

5. 今年度の取り組み

本取組を参考に、現在上がったアイデアを元に複数の構想設計が進行中である. これまでに培ってきた知識、技術を活かし、近年増えてきた AI による設計支援サービスなども活用することで実践的に取り組んでいく予定である.

注1

- 1) ここでは,動力源を元に動作する機械の総称を指す.
- 2) 機械部品メーカ機能と商社機能を持つ EC サイト.

〈引用〉[1] SMC 株式会社

https://www.smcworld.com/ja/jp

〈キーワード〉 機械設計, FA, 自動化, 空圧機器, 3D CAD, シーケンス制御, PLC